The amps and volts of a solar panel array can be affected by how the individual solar panels are wired together. This blog post is going to teach you how the wiring of a solar panel array affects it’s voltage and amperage. The key takeaway to know is that ‘Solar Panels in Series Adds their volts together’ and ‘Solar Panels wired in Parallel adds their amps together.’

## Tutorial Video:

## Solar Array Volts & Amps Wiring Diagrams:

This diagram shows two, 5 amp, 20 volt panels wired in series. Since series wired solar panels get their voltages added while their amps stay the same, we add 20V + 20V to show the total array voltage and leave the amps alone at 5A. There is 5 Amps at 40 Volts coming into the solar charge controller.

This diagram shows three, 4 amp, 24-volt panels wired in series. Since series wired solar panels get their voltages added while their amps stay the same, we add 24V + 24V + 24V to show the total array voltage of 72 Volts while the Amps remain at 4 Amps. This means there are 4 Amps at 72 Volts coming into the solar charge controller.

This diagram shows Four, 6 amp, 18-volt panels wired in series. Since series wired solar panels get their voltages added while their amps stay the same, we add 18V + 18V + 18V + 18V to show the total array voltage of 72 Volts while the Amps remain at 6 Amps. This means there are 6 Amps at 72 Volts coming into the solar charge controller.

This diagram shows five, 5 amp, 20-volt panels wired in series. Since series wired solar panels get their voltages added while their amps stay the same, we add 20V + 20V + 20V + 20V + 20V to show the total array voltage of 100 Volts while the Amps remain at 5 Amps. This means there are 5 Amps at 100 Volts coming into the solar charge controller.

This diagram shows six, 8 amp, 23-volt panels wired in series. Since series wired solar panels get their voltages added while their amps stay the same, we add 23V + 23V + 23V + 23V + 23V + 23V to show the total array voltage of 138 Volts while the Amps remain at 8 Amps. This means there are 8 Amps at 138 Volts coming into the solar charge controller.

This diagram shows two, 8 amp, 23-volt panels wired in parallel. Since parallel wired solar panels get their amps added while their volts stay the same, we add 8A + 8A to show the total array amps of 16 Amps while the Volts remain at 23 Volts. This means there are 16 Amps at 23 Volts coming into the solar charge controller.

This diagram shows three, 6 amp, 18-volt panels wired in parallel. Since parallel wired solar panels get their amps added while their volts stay the same, we add 6A + 6A + 6A to show the total array amps of 18 Amps while the Volts remain at 18 Volts. This means there are 18 Amps at 18 Volts coming into the solar charge controller.

The above diagram shows four, 5 amp, 20-volt panels wired in parallel. Since parallel wired solar panels get their amps added while their volts stay the same, we add 5A + 5A + 5A + 5A to show the total array amps of 20 Amps while the Volts remain at 20 Volts. This means there are 20 Amps at 20 Volts coming into the solar charge controller.

The above diagram shows five, 9 amp, 18-volt panels wired in parallel. Since parallel wired solar panels get their amps added while their volts stay the same, we add 9A + 9A + 9A + 9A + 9A to show the total array amps of 45 Amps while the Volts remain at 18 Volts. This means there are 45 Amps at 18 Volts coming into the solar charge controller.

The above diagram shows a four-panel array using 5 Amp, 20 Volt panels wired in a series-parallel configuration of 2-panel series strings wired in parallel (2s2p). First, we need to find the volts and amps of the series wired strings of solar panels. Since solar panels wired in series add their voltages together while the amps stay the same, we add 20V + 20V. This means that each series string in this series-parallel configuration is 5 Amps at 40 Volts. Since the two 5A – 40V series strings are then wired in parallel, we add the amps while not changing the volts because parallel wired solar panels (or series strings) get their amps added while their volts remain the same. Adding 5A + 5A from the series strings and leaving the volts the same as the series wired strings gives us an array of 10 Amps at 40 Volts.

The above diagram shows a six-panel array using 5 Amp, 20 Volt panels wired in a series-parallel configuration of 3-panel series strings wired in parallel (3s2p). First, we need to find the volts and amps of the series wired strings of solar panels. Since solar panels wired in series add their voltages together while the amps stay the same, we add 20V + 20V + 20V. This means that each series string in this series-parallel configuration is 5 Amps at 60 Volts. Since the two 5A – 60V series strings are then wired in parallel, we add the amps while not changing the volts because parallel wired solar panels (or series strings) get their amps added while their volts remain the same. Adding 5A + 5A from the series strings and leaving the volts the same as the series wired strings gives us an array of 10 Amps at 60 Volts.

The above diagram shows a six-panel array using 8 Amp, 23 Volt panels wired in a series-parallel configuration of 2-panel series strings wired in parallel (2s3p). First, we need to find the volts and amps of the series wired strings of solar panels. Since solar panels wired in series add their voltages together while the amps stay the same, we add 23V + 23V. This means that each series string in this series-parallel configuration is 8 Amps at 46 Volts. Since the three 8A – 46V series strings are then wired in parallel, we add the amps while not changing the volts because parallel wired solar panels (or series strings) get their amps added while their volts remain the same. Adding 8A + 8A + 8A from the series strings and leaving the volts the same as the series wired strings gives us an array of 24 Amps at 46 Volts.

The above diagram shows an eight-panel array using 5 Amp, 20 Volt panels wired in a series-parallel configuration of 4-panel series strings wired in parallel (4s2p). First, we need to find the volts and amps of the series wired strings of solar panels. Since solar panels wired in series add their voltages together while the amps stay the same, we add 20V + 20V + 20V + 20V. This means that each series string in this series-parallel configuration is 5 Amps at 80 Volts. Since the two 5A – 80V series strings are then wired in parallel, we add the amps while not changing the volts because parallel wired solar panels (or series strings) get their amps added while their volts remain the same. Adding 5A + 5A from the series strings and leaving the volts the same as the series wired strings gives us an array of 10 Amps at 80 Volts.

Check your Comprehension

Here is a quiz you can take to check yourself and see if you understand this blog post:

nick

Friday 6th of January 2023

Hi Nate, Your videos have been a game changer! thankyou heaps for all the effort and explanations! Just a quick one, I have 4x260w solar panels - 38.3V 9.06A Wiring in series parallel my workings out are 76.2V --18.12A Am I correct in saying a victron 100/30 will be sufficient ? I have a 460ah lifepo4 battery on a 12v setup Thanks Nick

Hien

Friday 9th of December 2022

Hey Nate, I am from Australia and I have watched a lot of your videos and I have a question for you.

I have purchased this solar charger

And I have 11 of these solar panels... - Rated max power 190W - Minimum power tolerance + - 3% - Current at Pmax at STC 5.31A - Voltage at Pmax at STC 35.8v - Short circuit current at STC 5.65 A - Open circuit voltage at STC 44.7v - Max system voltage 1000v - Max series fuse rating 10A

I also have 6 solar panels which are - Max power: 170W - Current: 4.83A - VOS: 44.41V - ISC: 5.29A - Voltage Max: 35.2v

Could you please help to either connect it together in either a series or parallel and where to fuse it to suit the solar charger.

Paul

Sunday 20th of November 2022

Great learning tool , thanks

Cameron

Wednesday 16th of November 2022

Hey Nate, and thanks for all the help!

I’m adding solar panels that are just slightly different to my existing array. And wondering how to size the Mc4 Fuses to work in a series parallel wiring. One group is Max fuse rating 20A and the other string is Max fuse rating 25A. Is this doable?

Existing array: 4x 455W (Series parallel) 41.7 VMP 10.92 IMP 49.5 VOC 11.66 ISC Max fuse rating 20A

Adding 2x 455W 43.25 VMP 10.52 IMP 51.80 VOC 11.26 ISC Max fuse rating 25A

Thanks for all you time and teachings

Rick

Monday 31st of October 2022

I have 10 100 watt solar panels a 100 amp 150 volt epever charge controller and a 200 ah life4 battery..another battery coming soon... what would be the best way to hook the panels to best maximize my solar input..... how should i fuse this system??? Any input would be unbelievable helpful..... ive had a 600 watt system for a year now with no problems with your videos guiding me alone but when i just tried to upgrade with more panels a better charge controller and battery its just become difficult...